Manufacturing execution system

Manufacturing Execution Systems (MES), are information technology systems that manage manufacturing operations in factories. Over the years, international standards and models have refined the scope of such systems in terms of activities, that typically include:

Contents

History

In the early 1980s MES concepts originated from data collection systems. A wide variety of systems arose using collected data for a dedicated purpose. Further development of these systems during the 1990s introduced overlap in functionality. Then the Manufacturing Enterprise Solutions Association (MESA) introduced some structure by defining 11 functions that set the scope of MES. Early 2000 the ANSI/ISA-95 standard merged this model with the Purdue Reference Model (PRM). A functional hierarchy was defined in which MES were situated at level 3 between ERP at level 4 and process control at levels 0,1,2. Activities in level 3 were divided over four main operations: Production, Quality, Logistics and Maintenance. Additional parts of the ANSI/ISA-95 standard defined the architecture of an MES into more detail, covering how to internally distribute functionality and what information to exchange internally as well as externally.

Relationship with other level 3 systems

The collection of systems acting on the ISA-95 level 3 can be called Manufacturing Operations Management Systems (MOMS). Apart from an MES these are typically Laboratory Information Management System (LIMS), Warehouse Management System (WMS) and Computerized Maintenance Management System (CMMS). From the MES point of view possible information flows are:

Relationship with level 4 systems

Examples of systems acting on ISA-95 level 4 are Product Lifecycle Management (PLM), Enterprise Resource Planning (ERP), Customer Relationship Management (CRM), Human Resource Management (HRM). From the MES point of view possible information flows are:

In many cases, Middleware Enterprise Application Integration (EAI) systems are being used to exchange transaction messages between MES and Level 4 systems. A common data definition, B2MML, has been defined within the ISA-95 standard to link MES systems to these Level 4 systems.

Relationship with level 0,1,2 systems

Systems acting on ISA-95 level 2 are Supervisory Control And Data Acquisition (SCADA), Programmable Logic Controllers (PLC), Distributed Control Systems (DCS) and Batch Automation Systems. Information flows between MES and these process control systems are roughly similar:

Most MES systems include connectivity as part of their product offering. Direct communication of plant floor equipment data is established by connecting to the Programmable logic controllers (PLC). Often, plant floor data is first collected and diagnosed for real-time control in a Distributed control system (DCS) or Supervisory Control and Data Acquisition (SCADA) system. In this case, the MES systems connect to these Level 2 system for exchanging plant floor data. The industry standard for plant floor connectivity is OLE for process control (OPC).

Sources

See also